Given:
\( \text{Total Rainfall} = 0.5 \times (2.5 + 3.6 + 5.4 + 3.3 + 2.6 + 1.2) = 0.5 \times 18.6 = 9.3\, \text{cm} \)
\( \text{Total Rainfall Volume} = \frac{9.3}{100} \times 80{,}000 = 7440\, \text{m}^3 \)
\( W = \frac{\text{Rainfall Volume} - \text{Runoff Volume}}{\text{Area}} \times \frac{100}{\text{Time}} \)
\( W = \frac{7440 - 4800}{80{,}000} \times \frac{100}{3} = \frac{2640}{80{,}000} \times 33.33 \approx \boxed{1.11\, \text{cm/h}} \)