Among the following options, select the option in which each complex in
Set-I shows geometrical isomerism and the two complexes in
Set-II are ionization isomers of each other.
[en = H2NCH2CH2NH2]
Set-I Analysis:
Set-II Analysis:
\([Co(NH_3)_5Cl]SO_4\) and \([Co(NH_3)_5(SO_4)]Cl\): These two complexes are ionization isomers because they differ in the ion released in solution.
Conclusion:
Option (C) satisfies both conditions:
To solve the problem, we analyze both sets to find complexes showing geometrical isomerism in Set-I and ionization isomers in Set-II.
1. Geometrical Isomerism in Set-I:
- [Co(NH3)3(NO2)3] does not show geometrical isomerism as it contains identical ligands.
- [Co(en)2Cl2] contains two bidentate ethylenediamine (en) ligands and two chloride ligands; it exhibits cis and trans geometrical isomers.
Hence, these two complexes are suitable for geometrical isomerism.
2. Ionization Isomers in Set-II:
- [Co(NH3)5Cl]SO4 and [Co(NH3)5(SO4)]Cl differ by interchange of ligands inside and outside coordination sphere, so they are ionization isomers.
Final Answer:
Set-I: [Co(NH3)3(NO2)3] and [Co(en)2Cl2]
Set-II: [Co(NH3)5Cl]SO4 and [Co(NH3)5(SO4)]Cl
This matches option C.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.