Step 1: Understanding Diamagnetism
Step 2: Electronic Configurations of the Metal Ions
Step 3: Determining the Magnetic Properties of Each Complex
Step 4: Conclusion
To solve the problem, determine the number of diamagnetic species among the given complexes by analyzing their oxidation states, d-electron counts, ligand field strengths, and spin states.
Given complexes:
1. \([Mn(NH_3)_6]^{3+}\)
2. \([MnCl_6]^{3-}\)
3. \([FeF_6]^{3-}\)
4. \([CoF_6]^{3-}\)
5. \([Fe(NH_3)_6]^{3+}\)
6. \([Co(en)_3]^{3+}\)
Step 1: Determine metal oxidation state and d-electron count
| Complex | Metal | Oxidation State | d-electrons (dn) | Ligand Field Strength |
|---|---|---|---|---|
| [Mn(NH3)6]3+ | Mn (25) | +3 | d4 | NH3 (strong field) |
| [MnCl6]3− | Mn | +3 | d4 | Cl− (weak field) |
| [FeF6]3− | Fe (26) | +3 | d5 | F− (weak field) |
| [CoF6]3− | Co (27) | +3 | d6 | F− (weak field) |
| [Fe(NH3)6]3+ | Fe | +3 | d5 | NH3 (strong field) |
| [Co(en)3]3+ | Co | +3 | d6 | en (strong field) |
Step 2: Determine spin states and diamagnetism
- Diamagnetic means all electrons paired.
Step 3: Count diamagnetic species
Only <\(Co(en)_3]^{3+}\) is diamagnetic.
Final Answer:
\[ \boxed{1} \]
Given below are two statements regarding conformations of n-butane. Choose the correct option. 
Consider a weak base \(B\) of \(pK_b = 5.699\). \(x\) mL of \(0.02\) M HCl and \(y\) mL of \(0.02\) M weak base \(B\) are mixed to make \(100\) mL of a buffer of pH \(=9\) at \(25^\circ\text{C}\). The values of \(x\) and \(y\) respectively are
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?