Step 1: Understanding Diamagnetism
Step 2: Electronic Configurations of the Metal Ions
Step 3: Determining the Magnetic Properties of Each Complex
Step 4: Conclusion
To solve the problem, determine the number of diamagnetic species among the given complexes by analyzing their oxidation states, d-electron counts, ligand field strengths, and spin states.
Given complexes:
1. \([Mn(NH_3)_6]^{3+}\)
2. \([MnCl_6]^{3-}\)
3. \([FeF_6]^{3-}\)
4. \([CoF_6]^{3-}\)
5. \([Fe(NH_3)_6]^{3+}\)
6. \([Co(en)_3]^{3+}\)
Step 1: Determine metal oxidation state and d-electron count
Complex | Metal | Oxidation State | d-electrons (dn) | Ligand Field Strength |
---|---|---|---|---|
[Mn(NH3)6]3+ | Mn (25) | +3 | d4 | NH3 (strong field) |
[MnCl6]3− | Mn | +3 | d4 | Cl− (weak field) |
[FeF6]3− | Fe (26) | +3 | d5 | F− (weak field) |
[CoF6]3− | Co (27) | +3 | d6 | F− (weak field) |
[Fe(NH3)6]3+ | Fe | +3 | d5 | NH3 (strong field) |
[Co(en)3]3+ | Co | +3 | d6 | en (strong field) |
Step 2: Determine spin states and diamagnetism
- Diamagnetic means all electrons paired.
Step 3: Count diamagnetic species
Only <\(Co(en)_3]^{3+}\) is diamagnetic.
Final Answer:
\[ \boxed{1} \]
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is