Step 1: Understanding Diamagnetism
Step 2: Electronic Configurations of the Metal Ions
Step 3: Determining the Magnetic Properties of Each Complex
Step 4: Conclusion
To solve the problem, determine the number of diamagnetic species among the given complexes by analyzing their oxidation states, d-electron counts, ligand field strengths, and spin states.
Given complexes:
1. \([Mn(NH_3)_6]^{3+}\)
2. \([MnCl_6]^{3-}\)
3. \([FeF_6]^{3-}\)
4. \([CoF_6]^{3-}\)
5. \([Fe(NH_3)_6]^{3+}\)
6. \([Co(en)_3]^{3+}\)
Step 1: Determine metal oxidation state and d-electron count
Complex | Metal | Oxidation State | d-electrons (dn) | Ligand Field Strength |
---|---|---|---|---|
[Mn(NH3)6]3+ | Mn (25) | +3 | d4 | NH3 (strong field) |
[MnCl6]3− | Mn | +3 | d4 | Cl− (weak field) |
[FeF6]3− | Fe (26) | +3 | d5 | F− (weak field) |
[CoF6]3− | Co (27) | +3 | d6 | F− (weak field) |
[Fe(NH3)6]3+ | Fe | +3 | d5 | NH3 (strong field) |
[Co(en)3]3+ | Co | +3 | d6 | en (strong field) |
Step 2: Determine spin states and diamagnetism
- Diamagnetic means all electrons paired.
Step 3: Count diamagnetic species
Only <\(Co(en)_3]^{3+}\) is diamagnetic.
Final Answer:
\[ \boxed{1} \]
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.