Among, Sc, Mn, Co and Cu, identify the element with highest enthalpy of atomisation. The spin only magnetic moment value of that element in its +2 oxidation state is _______BM (in nearest integer).
Enthalpy of atomisation is the enthalpy change when one mole of a substance is completely converted into gaseous atoms. It depends on the strength of the metallic bonds in the solid state. Stronger metallic bonds lead to higher enthalpy of atomisation.
The strength of metallic bonds in transition metals is related to the number of unpaired d-electrons that can participate in bonding. Electronic configurations of the given elements:
Sc (Z=21): [Ar] 3d\(^1\) 4s\(^2\)
Mn (Z=25): [Ar] 3d\(^5\) 4s\(^2\)
Co (Z=27): [Ar] 3d\(^7\) 4s\(^2\)
Cu (Z=29): [Ar] 3d\(^{10}\) 4s\(^1\)
Number of unpaired electrons in the ground state:
Sc: 1 unpaired electron
Mn: 5 unpaired electrons
Co: 3 unpaired electrons
Cu: 1 unpaired electron (due to stable fully filled d-orbital)
However, enthalpy of atomisation also depends on other factors.
From the given table: Enthalpy of Atomisation (kJ/mole):
Sc: 326
Mn: 281
Co: 425
Cu: 339
The element with the highest enthalpy of atomisation is Co (425 kJ/mole).
Now, we need to find the spin-only magnetic moment of Co in its +2 oxidation state (Co\(^{2+}\)).
Electronic configuration of Co\(^{2+}\): [Ar] 3d\(^7\)
To find the number of unpaired electrons in Co\(^{2+}\), we can use Hund's rule to fill the d orbitals:
3d: \( \uparrow \downarrow \) \( \uparrow \downarrow \) \( \uparrow \) \( \uparrow \) \( \uparrow \)
There are 3 unpaired electrons (n = 3). The spin-only magnetic moment (\( \mu_{spin-only} \)) is given by the formula: \[ \mu_{spin-only} = \sqrt{n(n+2)} \, \text{BM} \] where n is the number of unpaired electrons.
For Co\(^{2+}\) (n = 3): \[ \mu_{spin-only} = \sqrt{3(3+2)} \, \text{BM} = \sqrt{3 \times 5} \, \text{BM} = \sqrt{15} \, \text{BM} \] \( \sqrt{15} \approx 3.87 \, \text{BM} \) The nearest integer to 3.87 is 4.
Final Answer: (4)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $