Raoult’s law states that the partial vapor pressure of each volatile component in a solution is directly proportional to its mole fraction in the solution. It is mathematically expressed as:
Raoult's Law Formula:
\( P_A = x_A \cdot P_A^0 \)
Where:
Two characteristics of an ideal solution are:
\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.
