Step 1: Recall the formula of rate law.
For a reaction of order $n$, the rate constant $k$ has units:
\[
\text{Units of } k = \frac{\text{(concentration)}^{1-n}}{\text{time}}
\]
Step 2: Substitute for zero order reaction ($n=0$).
\[
\text{Units of } k = \frac{\text{concentration}^{1-0}}{\text{time}} = \frac{\text{concentration}}{\text{time}}
\]
Step 3: Express in standard SI units.
Concentration = mol/m$^3$, time = s
\[ $\Rightarrow$ \text{Units of } k = \frac{\text{mol/m}^3}{s} = \text{mol·m$^{-3}$·s$^{-1}$}
\]
Step 4: Conclusion.
The correct answer is (D).
\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.