Kinetic Energy Calculation for Various Orbits
The total energy (T.E.) of an electron in Bohr’s nth orbit is given by:
\[ T.E. = -\frac{13.6Z^2}{n^2} \, \text{eV/atom} \]
The kinetic energy (K.E.) of the electron is the negative of the total energy:
\[ K.E. = -T.E. = \frac{13.6Z^2}{n^2} \]
Thus, \( K.E. \) is proportional to \( \frac{Z^2}{n^2} \).
Calculate the K.E. for Each Option:
Conclusion:
Comparing these values, the highest K.E. is associated with the first orbit of \( \text{He}^+ \), with a value of 4.
To solve the problem, we need to determine which electron has the highest kinetic energy according to Bohr's model.
1. Kinetic energy in Bohr’s model:
For a hydrogen-like ion with atomic number \(Z\) and electron in the \(n^\text{th}\) orbit, the kinetic energy \(K_n\) is given by:
\[ K_n = \frac{Z^2 R_H}{n^2} \] where \(R_H\) is the Rydberg energy (~13.6 eV for hydrogen atom).
2. Calculate \(K_n\) for each option:
3. Comparing the kinetic energies:
\[ 54.4 > 30.6 > 13.6 = 13.6 \]
Final Answer:
The highest kinetic energy is for the electron in the first orbit of He\(^+\).
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?