Kinetic Energy Calculation for Various Orbits
The total energy (T.E.) of an electron in Bohr’s nth orbit is given by:
\[ T.E. = -\frac{13.6Z^2}{n^2} \, \text{eV/atom} \]
The kinetic energy (K.E.) of the electron is the negative of the total energy:
\[ K.E. = -T.E. = \frac{13.6Z^2}{n^2} \]
Thus, \( K.E. \) is proportional to \( \frac{Z^2}{n^2} \).
Calculate the K.E. for Each Option:
Conclusion:
Comparing these values, the highest K.E. is associated with the first orbit of \( \text{He}^+ \), with a value of 4.
To solve the problem, we need to determine which electron has the highest kinetic energy according to Bohr's model.
1. Kinetic energy in Bohr’s model:
For a hydrogen-like ion with atomic number \(Z\) and electron in the \(n^\text{th}\) orbit, the kinetic energy \(K_n\) is given by:
\[ K_n = \frac{Z^2 R_H}{n^2} \] where \(R_H\) is the Rydberg energy (~13.6 eV for hydrogen atom).
2. Calculate \(K_n\) for each option:
3. Comparing the kinetic energies:
\[ 54.4 > 30.6 > 13.6 = 13.6 \]
Final Answer:
The highest kinetic energy is for the electron in the first orbit of He\(^+\).
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.