1. Fundamental frequency of stretched string: $f = \frac{1}{2L}\sqrt{\frac{T}{\mu}}$, $\mu$ = linear density.
2. Let wire frequency at $T_1 = 144~\text{N}$ be $f_1$, at $T_2 = 169~\text{N}$ be $f_2$.
3. Given beat frequency with tuning fork $f_\text{t} = |f_1 - f_\text{t}| = |f_2 - f_\text{t}| = 5~\text{Hz}$.
4. Using ratio: $f_2/f_1 = \sqrt{T_2/T_1} = \sqrt{169/144} = 13/12$.
5. Let $f_1 = f_\text{t} - 5$ or $f_\text{t} + 5$. Solving gives $f_\text{t} = 125~\text{Hz}$.