The frequency of a vibrating string is given by:
\[ f = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}}, \]
where:
The tension \( T \) can be expressed in terms of Young’s modulus (\( Y \)) as:
\[ T = Y \cdot A \cdot \frac{\Delta \ell}{\ell}, \]
where:
Substitute \( T \) into the frequency formula:
\[ f = \frac{1}{2\ell} \sqrt{\frac{Y \cdot A \cdot \Delta \ell}{\ell \cdot \mu}}. \]
Substitute the numerical values:
Substitute into the formula:
\[ f = \frac{1}{2 \cdot 0.5} \sqrt{\frac{8 \times 10^{10} \cdot 3.2 \times 10^{-4} \cdot 0.5}{0.5 \cdot 8 \times 10^{-3}}}. \]
Simplify the terms inside the square root:
\[ f = 1 \cdot \sqrt{\frac{8 \times 10^{10} \cdot 3.2 \times 10^{-4} \cdot 0.5}{4 \times 10^{-3}}}. \]
\[ f = \sqrt{\frac{1.28 \times 10^{8}}{4 \times 10^{-3}}}. \]
\[ f = \sqrt{3.2 \times 10^{10}}. \]
Simplify further:
\[ f = 80 \, \text{Hz}. \]
The frequency of the vibrating string is \( f = 80 \, \text{Hz} \).
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}