The frequency of a vibrating string is given by:
\[ f = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}}, \]
where:
The tension \( T \) can be expressed in terms of Young’s modulus (\( Y \)) as:
\[ T = Y \cdot A \cdot \frac{\Delta \ell}{\ell}, \]
where:
Substitute \( T \) into the frequency formula:
\[ f = \frac{1}{2\ell} \sqrt{\frac{Y \cdot A \cdot \Delta \ell}{\ell \cdot \mu}}. \]
Substitute the numerical values:
Substitute into the formula:
\[ f = \frac{1}{2 \cdot 0.5} \sqrt{\frac{8 \times 10^{10} \cdot 3.2 \times 10^{-4} \cdot 0.5}{0.5 \cdot 8 \times 10^{-3}}}. \]
Simplify the terms inside the square root:
\[ f = 1 \cdot \sqrt{\frac{8 \times 10^{10} \cdot 3.2 \times 10^{-4} \cdot 0.5}{4 \times 10^{-3}}}. \]
\[ f = \sqrt{\frac{1.28 \times 10^{8}}{4 \times 10^{-3}}}. \]
\[ f = \sqrt{3.2 \times 10^{10}}. \]
Simplify further:
\[ f = 80 \, \text{Hz}. \]
The frequency of the vibrating string is \( f = 80 \, \text{Hz} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: