The linear velocity \( v \) is given by: \[ v = r \cdot \omega, \] where \( r \) is the radius and \( \omega \) is the angular velocity.
Given: \[ \text{Diameter} = 20 \, \text{cm} \Rightarrow r = \frac{20}{2} = 10 \, \text{cm} = 0.1 \, \text{m}. \]
The angular velocity \( \omega \) is: \[ \omega = 2\pi f, \quad f = \frac{\text{rpm}}{60} = \frac{600}{60} = 10 \, \text{rps}. \]
Substituting values: \[ v = 0.1 \cdot (2\pi \cdot 10) = 0.1 \cdot 20\pi \approx 6.28 \, \text{m/s}. \]