To find the average power consumed in the circuit, we begin with the instantaneous power, which is the product of the voltage \( v(t) \) and the current \( i(t) \):
\[ p(t) = v(t) \cdot i(t) = (v_0 \sin(\omega t)) \cdot (i_0 \sin(\omega t + \phi)) \]
Using the trigonometric identity for the product of sines:
\[ \sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \]
Substitute \( A = \omega t \) and \( B = \omega t + \phi \):
\[ \sin(\omega t) \sin(\omega t + \phi) = \frac{1}{2} [\cos(-\phi) - \cos(2\omega t + \phi)] \]
\(\cos(-\phi) = \cos(\phi)\), thus:
\[ p(t) = v_0 i_0 \frac{1}{2} [\cos(\phi) - \cos(2\omega t + \phi)] \]
To find the average power over a cycle, integrate this expression over one period \( T = \frac{2\pi}{\omega} \), then divide by \( T \):
\[ P_{\text{avg}} = \frac{1}{T} \int_0^T v_0 i_0 \frac{1}{2} [\cos(\phi) - \cos(2\omega t + \phi)] \, dt \]
This separates into two integrals:
\[ P_{\text{avg}} = \frac{v_0 i_0}{2T} \left[\int_0^T \cos(\phi) \, dt - \int_0^T \cos(2\omega t + \phi) \, dt \right] \]
The first term simplifies to:
\[ \int_0^T \cos(\phi) \, dt = \cos(\phi) \cdot T \]
And for the second term, the integral of cosine over a period is zero:
\[ \int_0^T \cos(2\omega t + \phi) \, dt = 0 \]
Therefore:
\[ P_{\text{avg}} = \frac{v_0 i_0}{2T} [\cos(\phi) \cdot T] = \frac{v_0 i_0}{2} \cos(\phi) \]
Hence, the average power consumed in the circuit over a cycle is:
\[ \frac{i_0 v_0}{2} \cos \phi \]