Step 1: The unit vector \( \mathbf{v} \) in the XY-plane making an angle of \( 45^\circ \) with \( \hat{i} + \hat{j} \) is given by:
\[ \mathbf{v} = \hat{i} \cos(45^\circ) + \hat{j} \sin(45^\circ) \]
Step 2: The angle between \( \mathbf{v} \) and the vector \( 3\hat{i} - 4\hat{j} \) is \( 60^\circ \). Using the dot product formula:
\[ \mathbf{v} \cdot (3\hat{i} - 4\hat{j}) = |\mathbf{v}| \cdot |3\hat{i} - 4\hat{j}| \cdot \cos(60^\circ) \]
Step 3: Solving this system of equations gives the components of the unit vector \( \mathbf{v} \).
Show that the line passing through the points A $(0, -1, -1)$ and B $(4, 5, 1)$ intersects the line joining points C $(3, 9, 4)$ and D $(-4, 4, 4)$.