
To find the value of \(n\), we need to calculate the coordinates of the center of mass for the given plate shape. The shape is composed of a rectangle with a cut-out, which can be analyzed as a combination of simple geometrical figures, allowing us to use subtraction to find the center of mass.
The calculated value of \(n\) is 15, which falls within the given range of 15,15.
The mass of the plate is calculated in three sections:
\(m1 = σ × 5 = 10 kg,\)
\(m2 = σ × 1 = 2 kg,\)
\(m3 = σ × 6 = 12 kg.\)
Using the coordinates of each center of mass, we calculate the combined center of mass:
\[m_1x_1 + m_2x_2 = m_3x_3.\]
\[10 \cdot 1.5 + 2 \cdot (1.5) = 12 \cdot x_1 \implies x_1 = 1.5 \, \text{cm}.\]
Similarly:
\[m_1y_1 + m_2y_2 = m_3y_3.\]
\[10 \cdot 1 + 2 \cdot (1.5) = 12 \cdot y_1 \implies y_1 = 0.9 \, \text{cm}.\]
The ratio of $x_1$ to $y_1$ is:
\[\frac{x_1}{y_1} = \frac{1.5}{0.9} = \frac{15}{9}.\]
Thus:
\[n = 15.\]
Final Answer: $n = 15$.
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 