The work to break the large drop into 27 smaller drops is given by: \[ W_1 = s \times 4\pi \left( \frac{R}{3} \right)^2 \times 27 - 4\pi R^2 \times s. \] Simplifying: \[ W_1 = 4\pi R^2 \times s \times (2) = 10 \, \text{Joule}. \]
The work to break the large drop into 64 smaller drops is: \[ W_2 = s \times 4\pi R^2 \times (4 - 1) = 4\pi R^2 \times s \times 3. \] Using the value \( W_1 = 10 \) Joules, we substitute into the equation for \( W_2 \): \[ W_2 = 3 \times \frac{10}{2} = 15 \, \text{Joule}. \]
The work required to break the large drop into 64 smaller drops is \( \boxed{15} \, \text{Joule} \).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: