The work to break the large drop into 27 smaller drops is given by: \[ W_1 = s \times 4\pi \left( \frac{R}{3} \right)^2 \times 27 - 4\pi R^2 \times s. \] Simplifying: \[ W_1 = 4\pi R^2 \times s \times (2) = 10 \, \text{Joule}. \]
The work to break the large drop into 64 smaller drops is: \[ W_2 = s \times 4\pi R^2 \times (4 - 1) = 4\pi R^2 \times s \times 3. \] Using the value \( W_1 = 10 \) Joules, we substitute into the equation for \( W_2 \): \[ W_2 = 3 \times \frac{10}{2} = 15 \, \text{Joule}. \]
The work required to break the large drop into 64 smaller drops is \( \boxed{15} \, \text{Joule} \).
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)