Given: - Mass of the rod: \(m = 2 \, \text{kg}\) - Length of the rod: \(L = 30 \, \text{cm} = 0.3 \, \text{m}\) - Impulse applied at end \(B\): \(J = 0.2 \, \text{Ns}\)
The moment of inertia of the rod about its center of mass is given by:
\[ I_{\text{cm}} = \frac{1}{12} m L^2 \]
Substituting the given values:
\[ I_{\text{cm}} = \frac{1}{12} \times 2 \times (0.3)^2 \] \[ I_{\text{cm}} = \frac{1}{12} \times 2 \times 0.09 = \frac{0.18}{12} = 0.015 \, \text{kg} \times \text{m}^2 \]
Since the impulse is applied at the end of the rod, we use the parallel axis theorem to find the moment of inertia about point \(B\):
\[ I_B = I_{\text{cm}} + m \left(\frac{L}{2}\right)^2 \]
Substituting the values:
\[ I_B = 0.015 + 2 \left(\frac{0.3}{2}\right)^2 \] \[ I_B = 0.015 + 2 \times (0.15)^2 \] \[ I_B = 0.015 + 2 \times 0.0225 = 0.015 + 0.045 = 0.06 \, \text{kg} \times \text{m}^2 \]
The angular impulse is related to the change in angular momentum by:
\[ J \times L = I_B \times \omega \]
Rearranging to find \(\omega\):
\[ \omega = \frac{J \times L}{I_B} \]
Substituting the values:
\[ \omega = \frac{0.2 \times 0.3}{0.06} \] \[ \omega = \frac{0.06}{0.06} = 1 \, \text{rad/s} \]
The time taken to turn through a right angle (\(\frac{\pi}{2}\) radians) is given by:
\[ t = \frac{\theta}{\omega} = \frac{\frac{\pi}{2}}{1} = \frac{\pi}{2} \, \text{s} \]
Comparing with the given expression \(\frac{\pi}{x} \, \text{s}\):
\[ x = 4 \]
The value of \(x\) is \(4\).
A uniform circular disc of radius \( R \) and mass \( M \) is rotating about an axis perpendicular to its plane and passing through its center. A small circular part of radius \( R/2 \) is removed from the original disc as shown in the figure. Find the moment of inertia of the remaining part of the original disc about the axis as given above.
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: