Given: - Mass of the rod: \(m = 2 \, \text{kg}\) - Length of the rod: \(L = 30 \, \text{cm} = 0.3 \, \text{m}\) - Impulse applied at end \(B\): \(J = 0.2 \, \text{Ns}\)
The moment of inertia of the rod about its center of mass is given by:
\[ I_{\text{cm}} = \frac{1}{12} m L^2 \]
Substituting the given values:
\[ I_{\text{cm}} = \frac{1}{12} \times 2 \times (0.3)^2 \] \[ I_{\text{cm}} = \frac{1}{12} \times 2 \times 0.09 = \frac{0.18}{12} = 0.015 \, \text{kg} \times \text{m}^2 \]
Since the impulse is applied at the end of the rod, we use the parallel axis theorem to find the moment of inertia about point \(B\):
\[ I_B = I_{\text{cm}} + m \left(\frac{L}{2}\right)^2 \]
Substituting the values:
\[ I_B = 0.015 + 2 \left(\frac{0.3}{2}\right)^2 \] \[ I_B = 0.015 + 2 \times (0.15)^2 \] \[ I_B = 0.015 + 2 \times 0.0225 = 0.015 + 0.045 = 0.06 \, \text{kg} \times \text{m}^2 \]
The angular impulse is related to the change in angular momentum by:
\[ J \times L = I_B \times \omega \]
Rearranging to find \(\omega\):
\[ \omega = \frac{J \times L}{I_B} \]
Substituting the values:
\[ \omega = \frac{0.2 \times 0.3}{0.06} \] \[ \omega = \frac{0.06}{0.06} = 1 \, \text{rad/s} \]
The time taken to turn through a right angle (\(\frac{\pi}{2}\) radians) is given by:
\[ t = \frac{\theta}{\omega} = \frac{\frac{\pi}{2}}{1} = \frac{\pi}{2} \, \text{s} \]
Comparing with the given expression \(\frac{\pi}{x} \, \text{s}\):
\[ x = 4 \]
The value of \(x\) is \(4\).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).