A uniform circular disc of radius \( R \) and mass \( M \) is rotating about an axis perpendicular to its plane and passing through its center. A small circular part of radius \( R/2 \) is removed from the original disc as shown in the figure. Find the moment of inertia of the remaining part of the original disc about the axis as given above.
Complete the following nuclear equation: \( \^{30}_{15}Si + ? \rightarrow ? + 1e^0 \)
The motion of a particle in the XY plane is given by \( x(t) = 25 + 6t^2 \, \text{m} \); \( y(t) = -50 - 20t + 8t^2 \, \text{m} \). The magnitude of the initial velocity of the particle, \( v_0 \), is given by: