The frequency of vibration of a sonometer wire is given by:
\(f = \frac{1}{2L} \sqrt{\frac{T}{\mu}}\)
Calculating for initial tension:
\(f_1 = \frac{1}{2} \sqrt{\frac{6}{\mu}}\)
Calculating for new tension:
\(f_2 = \frac{1}{2} \sqrt{\frac{54}{\mu}}\)
Given:
\(f_2 - f_1 = 12\)
Ratio of frequencies:
\(\frac{f_1}{f_2} = \frac{1}{3}\)
Substituting values:
\(f_1 = 6 \, \text{Hz}\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: