A tube of length L is shown in the figure. The radius of cross section at point (1) is 2 cm and at the point (2) is 1 cm, respectively. If the velocity of water entering at point (1) is 2 m/s, then velocity of water leaving the point (2) will be:

Step 1: Use the principle of continuity.
For an incompressible fluid, the volume flow rate is constant along the tube: \[ A_1 v_1 = A_2 v_2, \] where \( A \) = cross-sectional area, \( v \) = velocity.
Step 2: Express the area in terms of radius.
\[ A = \pi r^2. \] Hence, \[ \pi r_1^2 v_1 = \pi r_2^2 v_2. \] Simplify: \[ r_1^2 v_1 = r_2^2 v_2. \]
Step 3: Substitute the given values.
\[ r_1 = 2\,\text{cm}, \quad r_2 = 1\,\text{cm}, \quad v_1 = 2\,\text{m/s}. \] \[ (2)^2 (2) = (1)^2 v_2. \] \[ 8 = v_2. \]
Step 4: Compute the final result.
\[ v_2 = 8\,\text{m/s}. \]
\[ \boxed{v_2 = 8\,\text{m/s}} \]
A cube of side 10 cm is suspended from one end of a fine string of length 27 cm, and a mass of 200 grams is connected to the other end of the string. When the cube is half immersed in water, the system remains in balance. Find the density of the cube.
