The identity for $\sin 5\theta$ in terms of $\sin\theta$ and $\cos\theta$ is:
$\sin 5\theta = 5\sin\theta - 20\sin^3\theta + 16\sin^5\theta$
Converting powers of $\sin\theta$ using $\sin^2\theta = 1 - \cos^2\theta$, we can expand and transform into the form:
$\sin 5\theta = \sin\theta(16 \cos^4\theta - 12 \cos^2\theta + 1)$
Which matches Option (1).