Given: - Efficiency of the transformer: \( \eta = 80\% = 0.8 \) - Input power: \( P_{\text{input}} = 4 \, \text{kW} = 4000 \, \text{W} \) - Secondary voltage: \( V_{\text{secondary}} = 240 \, \text{V} \)
Step 1: Calculating the Output Power
The output power (\( P_{\text{output}} \)) is given by:
\[ P_{\text{output}} = \eta \times P_{\text{input}} \]
Substituting the given values:
\[ P_{\text{output}} = 0.8 \times 4000 \, \text{W} \] \[ P_{\text{output}} = 3200 \, \text{W} \]
Step 2: Calculating the Secondary Current
The power in the secondary coil is related to the secondary voltage and secondary current (\( I_{\text{secondary}} \)) by:
\[ P_{\text{output}} = V_{\text{secondary}} \times I_{\text{secondary}} \]
Rearranging to find \( I_{\text{secondary}} \):
\[ I_{\text{secondary}} = \frac{P_{\text{output}}}{V_{\text{secondary}}} \]
Substituting the values:
\[ I_{\text{secondary}} = \frac{3200 \, \text{W}}{240 \, \text{V}} \] \[ I_{\text{secondary}} = 13.33 \, \text{A} \]
Conclusion: The current in the secondary coil is \( 13.33 \, \text{A} \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).