Side of traffic signal board = a
Perimeter of the signal board = 3a = 180 cm
∴ a = 60 cm
Semi perimeter of the signal board (s) = \(\frac{3a}{2}\)
By using Heron’s formula,
Area of triangle =\(\sqrt{\text{[s(s - a)(s - b)(s - c)]}}\)
Area of given triangle
= \(\sqrt{\text{[s(s - a)(s - b)(s - c)]}}\)
=\( \sqrt{\text{[s(s - a)(s - a)(s - a)]}}\)
= \(\text{(s - a)} \sqrt{\text{[s(s - a)]}}\)
since s = \(\frac{3a}{2}\)
\((\frac{3a}{2} - a)\sqrt{\frac{3a}{2}(\frac{3a}{2} - a)}\)
\(= (\frac{a}{2}) \sqrt{\frac{3a}{2}(\frac{a}{2})}\)
\(= \frac{a}{2} × \frac{a}{2} × \sqrt3\)
=\( (\frac{\sqrt3}{4})a^2\)\( .......(1)\)
Area of the signal board = \( (\frac{\sqrt3}{4})a^2\) sq. units
perimeter = 180 cm
side of triangle = \(\frac{180}{3}\) cm
a = 60 cm
Area of the signal board = \( (\frac{\sqrt3}{4})(60)^2\)
\(= \)\( (\frac{\sqrt3}{4})(3600)\)
\(= 900\sqrt3\)
Area of the signal board \(= 900\sqrt3\) cm2
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.
Look up the dictionary entries for the words sympathy, familiarity, comfort, care, and surprise. Use the information given in the dictionary and complete the table.
Noun, Adjective, Adverb, Verb, Meaning:
sympathy
familiarity
comfort
care
surprise