Question:

A traffic signal board, indicating ‘SCHOOL AHEAD’, is an equilateral triangle with side ‘a’. Find the area of the signal board, using Heron’s formula. If its perimeter is 180 cm, what will be the area of the signal board?

Updated On: Jan 31, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Side of traffic signal board = a
traffic signal board

Perimeter of the signal board = 3a = 180 cm

∴ a = 60 cm

Semi perimeter of the signal board (s) = \(\frac{3a}{2}\)

By using Heron’s formula,

Area of triangle =\(\sqrt{\text{[s(s - a)(s - b)(s - c)]}}\)
Area of given triangle
\(\sqrt{\text{[s(s - a)(s - b)(s - c)]}}\)

=\( \sqrt{\text{[s(s - a)(s - a)(s - a)]}}\)

\(\text{(s - a)} \sqrt{\text{[s(s - a)]}}\)

since s = \(\frac{3a}{2}\)

\((\frac{3a}{2} - a)\sqrt{\frac{3a}{2}(\frac{3a}{2} - a)}\)

\(= (\frac{a}{2}) \sqrt{\frac{3a}{2}(\frac{a}{2})}\)

\(= \frac{a}{2} × \frac{a}{2} × \sqrt3\)

=\( (\frac{\sqrt3}{4})a^2\)\( .......(1)\)

Area of the signal board = \( (\frac{\sqrt3}{4})a^2\) sq. units
perimeter = 180 cm
side of triangle = \(\frac{180}{3}\) cm
a = 60 cm

Area of the signal board = \( (\frac{\sqrt3}{4})(60)^2\)

\(= \)\( (\frac{\sqrt3}{4})(3600)\)

\(= 900\sqrt3\)
Area of the signal board \(= 900\sqrt3\) cm2

Was this answer helpful?
1
0