By impulse β momentum theorem : J=MVCM
\(\Rightarrow V_{CM}=\frac{J}{M}=\frac{\frac{\pi}{2}}{100\times\frac{5}{1000}}=\sqrt{2\pi}\)
Total time of journey=\(\Delta t=\frac{\sqrt{2\pi}}{5}\)
By angular impulse-momentum theorem,
\(J\times\frac{R}{2}=[\frac{MR^2}{4}]w\)
\(w=\frac{j\times\frac{R}{2}}{\frac{MR^2}{4}}=\frac{J}{MR}\times2\)
\(=\frac{\frac{\frac{\sqrt{\pi}}{2}}{100}\times2}{\frac{5}{1000}\times\frac{4}{3}\times\frac{1}{100}}=2\times75\sqrt{2\pi}\) rad/s
Number of rotations = \(\frac{w.\Delta t}{2\pi}=30\)
\(\Rightarrow\)\( n=30\)
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: