By impulse β momentum theorem : J=MVCM
\(\Rightarrow V_{CM}=\frac{J}{M}=\frac{\frac{\pi}{2}}{100\times\frac{5}{1000}}=\sqrt{2\pi}\)
Total time of journey=\(\Delta t=\frac{\sqrt{2\pi}}{5}\)
By angular impulse-momentum theorem,
\(J\times\frac{R}{2}=[\frac{MR^2}{4}]w\)
\(w=\frac{j\times\frac{R}{2}}{\frac{MR^2}{4}}=\frac{J}{MR}\times2\)
\(=\frac{\frac{\frac{\sqrt{\pi}}{2}}{100}\times2}{\frac{5}{1000}\times\frac{4}{3}\times\frac{1}{100}}=2\times75\sqrt{2\pi}\) rad/s
Number of rotations = \(\frac{w.\Delta t}{2\pi}=30\)
\(\Rightarrow\)\( n=30\)
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: