The correct answer is $\sqrt{2}$
\(4(2\sqrt{2} + 1)\)
\(4(2\sqrt{2} - 1)\)
\(5\sqrt{2} + 1\)
\(5\sqrt{2} - 1\)
\(Q = \Delta U_1 + \Delta U_2\)
\(\Delta U_1 = CV\Delta T_1 = 2R(T_L - T_0)\)
\(\Delta U_2 = CV\Delta T_2 = 2R(T_R - T_0)\)
\(T_L = 3\sqrt{2}T_0, \quad T_R = \sqrt{2}T_0\)
\(Q = 2R[3\sqrt{2} - 1]T_0 + 2R(\sqrt{2} - 1)T_0\)
\(Q = 4RT_0[2\sqrt{2} - 1]\)
\(⇒\) \(\frac{Q}{RT_0} = 4[2\sqrt{2} - 1]\)