The decomposition of \( NH_3 \) on a platinum surface is a zero-order reaction. What are the rates of production of \( N_2 \) and \( H_2 \) if \( k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \)?
The rate constant for a zero-order reaction \( A \to P \) is 0.0030 mol L\(^{-1}\) s\(^{-1}\). How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?