Question:

The decomposition of \( NH_3 \) on a platinum surface is a zero-order reaction. What are the rates of production of \( N_2 \) and \( H_2 \) if \( k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \)?

Show Hint

For zero-order reactions, the rate of product formation is constant and equal to the rate constant. This applies regardless of the concentration of reactants.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

To solve the problem, we need to determine the rates of production of \( N_2 \) and \( H_2 \) in the zero-order decomposition of \( NH_3 \) on a platinum surface, given \( k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).

1. Write the Balanced Reaction:
The decomposition of \( NH_3 \) is:

\( 2NH_3 \rightarrow N_2 + 3H_2 \).

2. Understand Zero-Order Kinetics:
For a zero-order reaction, the rate of decomposition of \( NH_3 \) is \( \text{Rate} = k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \), independent of \( [NH_3] \). This is the rate of consumption of \( NH_3 \).

3. Relate Rates Using Stoichiometry:
The reaction rate in terms of \( NH_3 \) consumption is \( -\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt} \). For zero-order, \( -\frac{d[NH_3]}{dt} = k \). Thus, the rate of consumption of \( NH_3 \) is:

\( -\frac{d[NH_3]}{dt} = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).

4. Calculate Rate of Production of \( N_2 \):
From the stoichiometry, \( 2 \, \text{mol} \) of \( NH_3 \) produce \( 1 \, \text{mol} \) of \( N_2 \). So, \( \frac{d[N_2]}{dt} = \frac{1}{2} \left( -\frac{d[NH_3]}{dt} \right) \):

\( \frac{d[N_2]}{dt} = \frac{1}{2} \times 2.5 \times 10^{-4} = 1.25 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).

5. Calculate Rate of Production of \( H_2 \):
From the stoichiometry, \( 2 \, \text{mol} \) of \( NH_3 \) produce \( 3 \, \text{mol} \) of \( H_2 \). So, \( \frac{d[H_2]}{dt} = \frac{3}{2} \left( -\frac{d[NH_3]}{dt} \right) \):

\( \frac{d[H_2]}{dt} = \frac{3}{2} \times 2.5 \times 10^{-4} = 3.75 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).

Final Answer:
The rate of production of \( N_2 \) is \( 1.25 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \), and the rate of production of \( H_2 \) is \( 3.75 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).

Was this answer helpful?
0
0

Notes on Atomic Masses And Composition Of Nucleus