The decomposition of \( NH_3 \) on a platinum surface is a zero-order reaction. What are the rates of production of \( N_2 \) and \( H_2 \) if \( k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \)?
To solve the problem, we need to determine the rates of production of \( N_2 \) and \( H_2 \) in the zero-order decomposition of \( NH_3 \) on a platinum surface, given \( k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).
1. Write the Balanced Reaction:
The decomposition of \( NH_3 \) is:
\( 2NH_3 \rightarrow N_2 + 3H_2 \).
2. Understand Zero-Order Kinetics:
For a zero-order reaction, the rate of decomposition of \( NH_3 \) is \( \text{Rate} = k = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \), independent of \( [NH_3] \). This is the rate of consumption of \( NH_3 \).
3. Relate Rates Using Stoichiometry:
The reaction rate in terms of \( NH_3 \) consumption is \( -\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt} \). For zero-order, \( -\frac{d[NH_3]}{dt} = k \). Thus, the rate of consumption of \( NH_3 \) is:
\( -\frac{d[NH_3]}{dt} = 2.5 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).
4. Calculate Rate of Production of \( N_2 \):
From the stoichiometry, \( 2 \, \text{mol} \) of \( NH_3 \) produce \( 1 \, \text{mol} \) of \( N_2 \). So, \( \frac{d[N_2]}{dt} = \frac{1}{2} \left( -\frac{d[NH_3]}{dt} \right) \):
\( \frac{d[N_2]}{dt} = \frac{1}{2} \times 2.5 \times 10^{-4} = 1.25 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).
5. Calculate Rate of Production of \( H_2 \):
From the stoichiometry, \( 2 \, \text{mol} \) of \( NH_3 \) produce \( 3 \, \text{mol} \) of \( H_2 \). So, \( \frac{d[H_2]}{dt} = \frac{3}{2} \left( -\frac{d[NH_3]}{dt} \right) \):
\( \frac{d[H_2]}{dt} = \frac{3}{2} \times 2.5 \times 10^{-4} = 3.75 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).
Final Answer:
The rate of production of \( N_2 \) is \( 1.25 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \), and the rate of production of \( H_2 \) is \( 3.75 \times 10^{-4} \, \text{mol L}^{-1} \, \text{s}^{-1} \).
The rate constant for a zero-order reaction \( A \to P \) is 0.0030 mol L\(^{-1}\) s\(^{-1}\). How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?
In the given reaction sequence, the structure of Y would be: