For average acceleration:
\[ v = \sqrt{2 \cdot 10 \cdot 9.8} = \sqrt{196} = 14 \, \text{m/s}. \]
\[ v = \sqrt{2 \cdot 10 \cdot 5.0} = \sqrt{100} = 10 \, \text{m/s}. \]
\[ \Delta v = v_\text{before impact} + v_\text{after rebound} = 14 + 10 = 24 \, \text{m/s}. \]
\[ a = \frac{\Delta v}{\Delta t} = \frac{24}{0.2} = 120 \, \text{m/s}^2. \]
Final Answer: 120 m/s2
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: