A clique in a graph is a subgraph where every pair of distinct vertices is adjacent to each other.
Therefore, a subgraph \( H \) of graph \( G \) is called a clique if \( H \) is a complete graph. In a complete graph, every vertex is connected to every other vertex. This is the defining characteristic of a clique.
Therefore, option (4) is correct.
Let \( G \) be a simple, unweighted, and undirected graph. A subset of the vertices and edges of \( G \) are shown below.
It is given that \( a - b - c - d \) is a shortest path between \( a \) and \( d \); \( e - f - g - h \) is a shortest path between \( e \) and \( h \); \( a - f - c - h \) is a shortest path between \( a \) and \( h \). Which of the following is/are NOT the edges of \( G \)?
Let a random variable \( X \) follow Poisson distribution such that \( P(X = 0) = 2P(X = 1) \). Then, P(X = 3) = ______
The probability distribution of a random variable \( X \) is given as follows. Then, \( P(X = 50) - \frac{P(X \leq 30)}{P(X \geq 20)} \) =