Let \( G \) be a simple, unweighted, and undirected graph. A subset of the vertices and edges of \( G \) are shown below.

It is given that \( a - b - c - d \) is a shortest path between \( a \) and \( d \); \( e - f - g - h \) is a shortest path between \( e \) and \( h \); \( a - f - c - h \) is a shortest path between \( a \) and \( h \). Which of the following is/are NOT the edges of \( G \)?
Suppose a minimum spanning tree is to be generated for a graph whose edge weights are given below. Identify the graph which represents a valid minimum spanning tree?
\[\begin{array}{|c|c|}\hline \text{Edges through Vertex points} & \text{Weight of the corresponding Edge} \\ \hline (1,2) & 11 \\ \hline (3,6) & 14 \\ \hline (4,6) & 21 \\ \hline (2,6) & 24 \\ \hline (1,4) & 31 \\ \hline (3,5) & 36 \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match LIST-I with LIST-II

Choose the correct answer from the options given below:
Consider designing a linear binary classifier \( f(x) = \text{sign}(w^T x + b), x \in \mathbb{R}^2 \) on the following training data: 
Class-2: \( \left\{ \left( \begin{array}{c} 0 \\ 0 \end{array} \right) \right\} \)
Hard-margin support vector machine (SVM) formulation is solved to obtain \( w \) and \( b \). Which of the following options is/are correct?
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
