The magnetic field due to an arc is given by: $$B = \frac{\mu_0 I \theta}{4 \pi r}$$ where: $B$ is the magnetic field
$\mu_0 = 4\pi \times 10^{-7}$ T m/A
$I = 14$ A
$\theta = \pi$ radians (semicircle)
$r = 2.2 \text{ cm} = 0.022 \text{ m}$
Plugging in the values: $$B = \frac{(4\pi \times 10^{-7} \text{ T m/A}) (14 \text{ A}) (\pi)}{4 \pi (0.022 \text{ m})}$$ $$B = \frac{14 \pi \times 10^{-7}}{0.022}$$ $$B = \frac{14 \pi}{2.2} \times 10^{-5}$$ $$B \approx 20 \times 10^{-5} \text{ T}$$ $$B = 2 \times 10^{-4} \text{ T}$$
Answer: The magnetic field is $2 \times 10^{-4}$ T. Thus, the answer is 2.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: