The magnetic field due to an arc is given by: $$B = \frac{\mu_0 I \theta}{4 \pi r}$$ where: $B$ is the magnetic field
$\mu_0 = 4\pi \times 10^{-7}$ T m/A
$I = 14$ A
$\theta = \pi$ radians (semicircle)
$r = 2.2 \text{ cm} = 0.022 \text{ m}$
Plugging in the values: $$B = \frac{(4\pi \times 10^{-7} \text{ T m/A}) (14 \text{ A}) (\pi)}{4 \pi (0.022 \text{ m})}$$ $$B = \frac{14 \pi \times 10^{-7}}{0.022}$$ $$B = \frac{14 \pi}{2.2} \times 10^{-5}$$ $$B \approx 20 \times 10^{-5} \text{ T}$$ $$B = 2 \times 10^{-4} \text{ T}$$
Answer: The magnetic field is $2 \times 10^{-4}$ T. Thus, the answer is 2.
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}