
The magnetic field due to an arc is given by: $$B = \frac{\mu_0 I \theta}{4 \pi r}$$ where: $B$ is the magnetic field
$\mu_0 = 4\pi \times 10^{-7}$ T m/A
$I = 14$ A
$\theta = \pi$ radians (semicircle)
$r = 2.2 \text{ cm} = 0.022 \text{ m}$
Plugging in the values: $$B = \frac{(4\pi \times 10^{-7} \text{ T m/A}) (14 \text{ A}) (\pi)}{4 \pi (0.022 \text{ m})}$$ $$B = \frac{14 \pi \times 10^{-7}}{0.022}$$ $$B = \frac{14 \pi}{2.2} \times 10^{-5}$$ $$B \approx 20 \times 10^{-5} \text{ T}$$ $$B = 2 \times 10^{-4} \text{ T}$$
Answer: The magnetic field is $2 \times 10^{-4}$ T. Thus, the answer is 2.
A 5 $\Omega$ resistor and a 10 $\Omega$ resistor are connected in parallel. What is the equivalent resistance of the combination?
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.