
The magnetic field due to an arc is given by: $$B = \frac{\mu_0 I \theta}{4 \pi r}$$ where: $B$ is the magnetic field
$\mu_0 = 4\pi \times 10^{-7}$ T m/A
$I = 14$ A
$\theta = \pi$ radians (semicircle)
$r = 2.2 \text{ cm} = 0.022 \text{ m}$
Plugging in the values: $$B = \frac{(4\pi \times 10^{-7} \text{ T m/A}) (14 \text{ A}) (\pi)}{4 \pi (0.022 \text{ m})}$$ $$B = \frac{14 \pi \times 10^{-7}}{0.022}$$ $$B = \frac{14 \pi}{2.2} \times 10^{-5}$$ $$B \approx 20 \times 10^{-5} \text{ T}$$ $$B = 2 \times 10^{-4} \text{ T}$$
Answer: The magnetic field is $2 \times 10^{-4}$ T. Thus, the answer is 2.

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: