Equation of the line passing through \( P \) is:
\[
x = r + 1, \quad y = 2r + 3, \quad z = r + 2.
\]
Substituting into \( L_1: x - y + 3z = 6 \):
\[
(r+1) - (2r+3) + 3(r+2) = 6 \quad \Rightarrow \quad r = 1.
\]
Thus, \( Q = (2, 5, 3) \).
Equation of the line passing through \( Q \) and perpendicular to \( L_1 \):
\[
\frac{x-2}{2} = \frac{y-5}{-1} = \frac{z-3}{3}.
\]
Substituting into \( L_2: 2x - y + z = -4 \):
\[
2(2 + 2\lambda) - (5 - \lambda) + (3 + 3\lambda) = -4 \quad \Rightarrow \quad \lambda = -1.
\]
Thus, \( R = (1, 6, 0) \).
Distance \( PQ \):
\[
PQ = \sqrt{(2-1)^2 + (5-3)^2 + (3-2)^2} = \sqrt{6}.
\]
Centroid of \( \triangle PQR \):
\[
\text{Centroid} = \left(\frac{1+2+1}{3}, \frac{3+5+6}{3}, \frac{2+3+0}{3}\right) = \left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right).
\]
Perimeter of \( \triangle PQR \):
\[
\sqrt{6} + \sqrt{11} + \sqrt{13}.
\]