To solve this problem, we need to understand the concept of kinetic energy and the conservation of momentum in a system where a stationary particle breaks into two parts.
\(\frac{K_B}{K_A} = \frac{\frac{1}{2} m_B v_B^2}{\frac{1}{2} m_A v_A^2} = \frac{m_B v_B^2}{m_A v_A^2}\)
\(\frac{K_B}{K_A} = \frac{m_B v_B^2}{m_A \left(\frac{m_B v_B}{m_A}\right)^2} = \frac{v_B}{v_A}\)
Initial momentum is zero:
\[ P_A = P_B \implies m_A v_A = m_B v_B. \]
The kinetic energy ratio is:
\[ \frac{K_B}{K_A} = \frac{\frac{1}{2} m_B v_B^2}{\frac{1}{2} m_A v_A^2}. \]
\[ \frac{K_B}{K_A} = \frac{m_B v_B^2}{m_A v_A^2} = \frac{v_B}{v_A}. \]
Final Answer: vB : vA.
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.