Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
In the year 1911, Rutherford discovered the atomic nucleus along with his associates. It is already known that every atom is manufactured of positive charge and mass in the form of a nucleus that is concentrated at the center of the atom. More than 99.9% of the mass of an atom is located in the nucleus. Additionally, the size of the atom is of the order of 10-10 m and that of the nucleus is of the order of 10-15 m.
Read More: Nuclei