The given triple alpha process is:
\( ^4\text{He} + ^4\text{He} + ^4\text{He} \rightarrow ^{12}\text{C} + Q \)
The power generated by the star is given as:
\( \text{Power} = \frac{N}{t} Q \),
where \( \frac{N}{t} \) is the number of reactions per second.
The energy released per reaction (\( Q \)) is:
\( Q = (3m_{\text{He}} - m_{\text{C}})c^2 \)
Substituting the given values:
\( Q = (3 \times 4.0026 - 12) \times (3 \times 10^8)^2 \)
\( Q = 7.266 \, \text{MeV} \)
Convert \( Q \) into joules:
\( Q = 7.266 \times 1.602 \times 10^{-13} \, \text{J} \)
\( Q = 1.163 \times 10^{-12} \, \text{J} \)
Rearranging the power equation:
\( \frac{N}{t} = \frac{\text{Power}}{Q} \)
Substitute the values:
\( \frac{N}{t} = \frac{5.808 \times 10^{30}}{1.163 \times 10^{-12}} \)
Simplify:
\( \frac{N}{t} = 5 \times 10^{42} \, \text{s}^{-1} \)
Final Answer: The rate of conversion of \( ^4\text{He} \) to \( ^{12}\text{C} \) is:
\( n = 5 \, (\text{where } \frac{N}{t} = n \times 10^{42} \, \text{s}^{-1}) \).
Mass Defect and Energy Released in the Fission of \( ^{235}_{92}\text{U} \)
When a neutron collides with \( ^{235}_{92}\text{U} \), the nucleus gives \( ^{140}_{54}\text{Xe} \) and \( ^{94}_{38}\text{Sr} \) as fission products, and two neutrons are ejected. Calculate the mass defect and the energy released (in MeV) in the process.
Given:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: