The given triple alpha process is:
\( ^4\text{He} + ^4\text{He} + ^4\text{He} \rightarrow ^{12}\text{C} + Q \)
The power generated by the star is given as:
\( \text{Power} = \frac{N}{t} Q \),
where \( \frac{N}{t} \) is the number of reactions per second.
The energy released per reaction (\( Q \)) is:
\( Q = (3m_{\text{He}} - m_{\text{C}})c^2 \)
Substituting the given values:
\( Q = (3 \times 4.0026 - 12) \times (3 \times 10^8)^2 \)
\( Q = 7.266 \, \text{MeV} \)
Convert \( Q \) into joules:
\( Q = 7.266 \times 1.602 \times 10^{-13} \, \text{J} \)
\( Q = 1.163 \times 10^{-12} \, \text{J} \)
Rearranging the power equation:
\( \frac{N}{t} = \frac{\text{Power}}{Q} \)
Substitute the values:
\( \frac{N}{t} = \frac{5.808 \times 10^{30}}{1.163 \times 10^{-12}} \)
Simplify:
\( \frac{N}{t} = 5 \times 10^{42} \, \text{s}^{-1} \)
Final Answer: The rate of conversion of \( ^4\text{He} \) to \( ^{12}\text{C} \) is:
\( n = 5 \, (\text{where } \frac{N}{t} = n \times 10^{42} \, \text{s}^{-1}) \).
Mass Defect and Energy Released in the Fission of \( ^{235}_{92}\text{U} \)
When a neutron collides with \( ^{235}_{92}\text{U} \), the nucleus gives \( ^{140}_{54}\text{Xe} \) and \( ^{94}_{38}\text{Sr} \) as fission products, and two neutrons are ejected. Calculate the mass defect and the energy released (in MeV) in the process.
Given:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: