A square with sides of length $6\,\text{cm}$ is given. The boundary of the shaded region is defined by two semi-circles whose diameters are the sides of the square, as shown. The area of the shaded region is \(\underline{\hspace{1cm}}\) $\text{cm}^2$.

Step 1: Area of the two semi-circles.
Each semi-circle area $=\tfrac12\pi r^2=\tfrac12\pi(3^2)=\tfrac{9\pi}{2}$.
Sum of two semi-circles:
\[
A_{\text{semi-sum}}=\frac{9\pi}{2}+\frac{9\pi}{2}=9\pi.
\]
Step 2: Area of their overlap (circular lens).
Distance between centers:
\[
d=\sqrt{(3-0)^2+(0-3)^2}=3\sqrt{2}.
\]
For two equal circles of radius $r$ and separation $d$, the overlap area is
\[
A_{\cap}=2r^2\cos^{-1}\!\left(\frac{d}{2r}\right)-\frac{d}{2}\sqrt{4r^2-d^2}.
\]
Here $r=3,\ d=3\sqrt{2}\Rightarrow \frac{d}{2r}=\frac{\sqrt{2}}{2}$, so $\cos^{-1}(\sqrt{2}/2)=\frac{\pi}{4}$. Thus
\[
A_{\cap}=2(3^2)\left(\frac{\pi}{4}\right)-\frac{3\sqrt{2}}{2}\sqrt{36-18}
= \frac{18\pi}{4}-\frac{3\sqrt{2}}{2}\cdot 3\sqrt{2}
= \frac{9\pi}{2}-9.
\]
Step 3: Shaded area (union minus the lens twice).
The shaded part is the two semi-circles with the overlap removed from both, i.e.
\[
A_{\text{shaded}} = A_{\text{semi-sum}} - 2A_{\cap}
= 9\pi - 2\!\left(\frac{9\pi}{2}-9\right)
= 9\pi - 9\pi + 18
= \boxed{18\ \text{cm}^2}.
\]
In the adjoining figure, $\triangle CAB$ is a right triangle, right angled at A and $AD \perp BC$. Prove that $\triangle ADB \sim \triangle CDA$. Further, if $BC = 10$ cm and $CD = 2$ cm, find the length of AD. 
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative

In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

Eight students (P, Q, R, S, T, U, V, and W) are playing musical chairs. The figure indicates their order of position at the start of the game. They play the game by moving forward in a circle in the clockwise direction.
After the 1st round, the 4th student behind P leaves the game.
After the 2nd round, the 5th student behind Q leaves the game.
After the 3rd round, the 3rd student behind V leaves the game.
After the 4th round, the 4th student behind U leaves the game.
Who all are left in the game after the 4th round?

Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is: