A logician proves that \((P \land Q) \rightarrow (P \lor Q)\) is a tautology in the following steps:
i. \((P \land Q) \rightarrow (P \lor Q)\)
ii. \(\langle X \rangle \langle OP \rangle (P \lor Q)\)
iii. \((\neg P \lor P \lor Q \lor \neg Q)\)
iv. \(T\) (TRUE)
Other symbols are standard logic operators: \(\neg\) stands for NEGATION; \(\land\) for AND; \(\lor\) for OR; and \(\rightarrow\) for IMPLIES.
Which of the following is/are the set of correct values of \(X\) and \(OP\)?