Step 1: Understanding the induced emf in a loop inside a solenoid.
The induced emf in the loop is given by the equation:
\[
\text{emf} = B A W N \sin(\omega t)
\]
Where:
- \( B \) is the magnetic field in the solenoid,
- \( A \) is the area of the loop,
- \( W \) is the angular frequency of the solenoid's current,
- \( N \) is the number of turns per unit length.
Step 2: Calculating the magnetic field \( B \) in the solenoid.
The magnetic field \( B \) inside a solenoid is given by:
\[
B = \mu_0 n I
\]
Where:
- \( \mu_0 = 4\pi \times 10^{-7} \, \text{T} \cdot \text{m}/\text{A} \),
- \( n = 5000 \, \text{turns/m} \),
- \( I = 2.5 \, \text{A} \).
So, the magnetic field \( B \) is:
\[
B = 4\pi \times 10^{-7} \times 5000 \times 2.5 = 5\pi \times 10^{-3} \, \text{T}
\]
Step 3: Area of the loop.
The area of the loop is:
\[
A = 2 \, \text{cm} \times 2 \, \text{cm} = 4 \, \text{cm}^2 = 4 \times 10^{-4} \, \text{m}^2
\]
Step 4: Calculating the induced emf.
Substitute the values into the equation for emf:
\[
\text{emf} = (5 \times 10^{-3}) \times (4 \times 10^{-4}) \times 700 \times 1
\]
\[
\text{emf} = 5 \times \frac{22}{7} \times 4 \times 700 \times 10^{-7} = 44 \times 10^{-4} \, \text{V}
\]