Step 1: Calculate Area Vector of the Square Loop:
- Side of square = 10 cm = 0.1 m
- Area \( A = (0.1)^2 = 0.01 \, \text{m}^2 \). Since the loop is placed in the east-west plane, the area vector \( \vec{A} \) is along the \( \hat{j} \) direction:
\[ \vec{A} = 0.01 \, \hat{j} \, \text{m}^2 \]
Step 2: Calculate the Magnetic Field Vector \( \vec{B} \):
- The magnetic field \( B = 0.20 \, \text{T} \) is directed at a \( 45^\circ \) angle in the northeast direction, so:
\[ \vec{B} = \frac{0.20}{\sqrt{2}} \, \hat{i} + \frac{0.20}{\sqrt{2}} \, \hat{j} \]
- Simplify:
\[ \vec{B} = 0.1414 \, \hat{i} + 0.1414 \, \hat{j} \, \text{T} \]
Step 3: Calculate the Magnetic Flux \( \Phi \):
\[ \Phi = \vec{B} \cdot \vec{A} = (0.1414 \, \hat{i} + 0.1414 \, \hat{j}) \cdot (0 \, \hat{i} + 0.01 \, \hat{j}) \]
\[ \Phi = 0.1414 \times 0.01 = 0.001414 \, \text{Wb} \]
Step 4: Calculate Induced EMF (\( \varepsilon \)):
- The magnetic field is reduced to zero in \( \Delta t = 1 \, \text{s} \), so:
\[ \varepsilon = -\frac{\Delta \Phi}{\Delta t} = -\frac{0.001414 - 0}{1} = 0.001414 \, \text{V} = \sqrt{2} \times 10^{-3} \, \text{V} \]
Step 5: Determine \( x \):
- Since \( \varepsilon = \sqrt{x} \times 10^{-3} \, \text{V} \), we have \( x = 2 \).
So, the correct answer is: \(x = 2\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: