\[
\text{Given: } \frac{dV}{dt} = 50 \, \text{cm}^3/\text{min},
\]
\[
\frac{d}{dt} \left( \frac{4}{3} \pi r^3 \right) = 50,
\]
\[
3r^2 \frac{dr}{dt} = \frac{150}{4\pi} \quad \Rightarrow \quad \frac{dr}{dt} = \frac{50}{4\pi r^2}.
\]
\text{Substitute } r = 15:
\[
\left( \frac{dr}{dt} \right)_{r = 15} = \frac{50}{4\pi \times 225} = \frac{1}{18\pi} \, \text{cm/min}.
\]
Final Answer:
\[
\boxed{\frac{1}{18\pi} \, \text{cm/min}}
\]