Step 1: Weight of the sphere The weight of the sphere w is given by:
\( w = \frac{4}{3} \pi \left( D^3 - \frac{d^3}{8} \right) \sigma g, \)
where:
Step 2: Buoyant force The buoyant force \( F_b \) is given by:
\( F_b = \frac{4}{3} \pi \left( \frac{D^3}{8} \right) g, \)
where \( \frac{D^3}{8} \) is the volume of displaced water.
Step 3: Equilibrium condition For the sphere to just float, the weight equals the buoyant force:
\( w = F_b. \)
Substitute expressions for \( w \) and \( F_b \):
\( \frac{4}{3} \pi \left( D^3 - \frac{d^3}{8} \right) \sigma g = \frac{4}{3} \pi \left( \frac{D^3}{8} \right) g. \)
Cancel common terms:
\( \left( D^3 - d^3 \right) \sigma = D^3. \)
Simplify:
\( D^3 - d^3 = \frac{D^3}{\sigma}. \)
Step 4: Solve for \(\frac{d}{D}\) Divide through by \( D^3 \):
\( 1 - \frac{d^3}{D^3} = \frac{1}{\sigma}. \)
Rearrange:
\( \frac{d^3}{D^3} = 1 - \frac{1}{\sigma}. \)
Take the cube root:
\( \frac{d}{D} = \left( 1 - \frac{1}{\sigma} \right)^{\frac{1}{3}}. \)
Invert to find \( \frac{D}{d} \):
\( \frac{D}{d} = \left( \frac{\sigma}{\sigma - 1} \right)^{\frac{1}{3}}. \)
Final Answer: \( \frac{D}{d} = \left( \frac{\sigma}{\sigma - 1} \right)^{\frac{1}{3}}. \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: