Step 1: Weight of the sphere The weight of the sphere w is given by:
\( w = \frac{4}{3} \pi \left( D^3 - \frac{d^3}{8} \right) \sigma g, \)
where:
Step 2: Buoyant force The buoyant force \( F_b \) is given by:
\( F_b = \frac{4}{3} \pi \left( \frac{D^3}{8} \right) g, \)
where \( \frac{D^3}{8} \) is the volume of displaced water.
Step 3: Equilibrium condition For the sphere to just float, the weight equals the buoyant force:
\( w = F_b. \)
Substitute expressions for \( w \) and \( F_b \):
\( \frac{4}{3} \pi \left( D^3 - \frac{d^3}{8} \right) \sigma g = \frac{4}{3} \pi \left( \frac{D^3}{8} \right) g. \)
Cancel common terms:
\( \left( D^3 - d^3 \right) \sigma = D^3. \)
Simplify:
\( D^3 - d^3 = \frac{D^3}{\sigma}. \)
Step 4: Solve for \(\frac{d}{D}\) Divide through by \( D^3 \):
\( 1 - \frac{d^3}{D^3} = \frac{1}{\sigma}. \)
Rearrange:
\( \frac{d^3}{D^3} = 1 - \frac{1}{\sigma}. \)
Take the cube root:
\( \frac{d}{D} = \left( 1 - \frac{1}{\sigma} \right)^{\frac{1}{3}}. \)
Invert to find \( \frac{D}{d} \):
\( \frac{D}{d} = \left( \frac{\sigma}{\sigma - 1} \right)^{\frac{1}{3}}. \)
Final Answer: \( \frac{D}{d} = \left( \frac{\sigma}{\sigma - 1} \right)^{\frac{1}{3}}. \)
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: