According to Stefen Boltzmann law,
$Q = \sigma \,A\,t\left(T^{4}-T_{0}^{4}\right)$
If T, $T_{0}, \sigma$ and t are same for both bodies.
Then,
$\Rightarrow\, \frac{Q_{sphere}}{Q_{cube}}=\frac{A_{sphere}}{A_{cube}}=\frac{4\pi r^{2}}{6a^{2}}\quad\quad\quad...\left(i\right)$
Given,
Volume of sphere = Volume of cube
$\Rightarrow\quad \frac{4}{3}\pi r^{3}=a^{3}$
$\Rightarrow\,a = r\left(\frac{4}{3}\pi\right)^{1/3}$
Substituting the value of a in equation (i), we get
$\frac{Q_{sphere}}{Q_{cube}}=\frac{4\pi r^{2}}{6a^{2}}=\frac{4\pi r^{2}}{6\left\{\left(\frac{4}{3}\pi\right)^{1/3}r\right\}^{2}}$
$=\frac{4\pi r^{2}}{6\left(\frac{4}{3}\pi\right)^{1/3} r^{2}}=\left(\frac{\pi}{6}\right)^{1/3} :1$