The given system of equations can be written in matrix form as:
\[
\begin{bmatrix}
2 & -3 & 5
3 & 2 & -4
1 & 1 & -2
\end{bmatrix}
\begin{bmatrix}
x y z
\end{bmatrix}
=
\begin{bmatrix}
11 -5 -3
\end{bmatrix}.
\]
Let:
\[
A = \begin{bmatrix}
2 & -3 & 5
3 & 2 & -4
1 & 1 & -2
\end{bmatrix}, \quad X = \begin{bmatrix}
x y z
\end{bmatrix}, \quad B = \begin{bmatrix}
11 -5 -3
\end{bmatrix}.
\]
Then:
\[
AX = B \quad \Rightarrow \quad X = A^{-1}B.
\]
Find \( A^{-1} \) using the formula:
\[
A^{-1} = \frac{1}{\det(A)} \text{adj}(A).
\]
Compute \( \det(A) \), \( \text{adj}(A) \), and then \( A^{-1}B \) to solve for \( X \).