To find the molarity (M), use the formula:
\( M = \frac{n_{\text{solute}}}{V} \times 1000 \)
Given that the solution is 31.4% \( H_2SO_4 \), with a density of 1.25 g/mL:
Step 1: Calculate the mass of \( H_2SO_4 \) in 100 g of solution:
Mass of \( H_2SO_4 = 31.4 \, \text{g} \)
Step 2: Convert this to moles:
\( \frac{31.4}{98} = 0.32 \, \text{mol} \)
Step 3: Find the volume of the solution:
\( \text{Volume} = \frac{\text{Mass of solution}}{\text{Density}} = \frac{100}{1.25} = 80 \, \text{mL} \)
Step 4: Calculate molarity:
\( M = \frac{0.32 \, \text{mol}}{80 \, \text{mL}} \times 1000 = 4.005 \approx 4 \, \text{M} \)
So, the correct answer is: 4M
Step 1: Assume 1 L of solution.
Density \( = 1.25\,\text{g/mL} = 1.25\,\text{g/cm}^3 \) \[ \text{Mass of 1 L solution} = 1000\,\text{mL} \times 1.25\,\text{g/mL} = 1250\,\text{g} \]
The solution is 31.4% \( \text{H}_2\text{SO}_4 \) by mass. \[ \text{Mass of } \text{H}_2\text{SO}_4 = \frac{31.4}{100} \times 1250 = 392.5\,\text{g} \]
\[ \text{Moles of } \text{H}_2\text{SO}_4 = \frac{\text{Mass}}{\text{Molar mass}} = \frac{392.5}{98} = 4.005 \approx 4\,\text{mol} \]
Molarity \( M = \frac{\text{moles of solute}}{\text{volume of solution in litres}} \) \[ M = \frac{4.0}{1.0} = 4.0\,\text{M} \]
\[ \boxed{4\,\text{M}} \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: