Step 1: Given Data
- Mass of sphere, \( M \)
- Radius of sphere, \( R \)
- Mass of cylinder, \( \frac{M}{2} \)
- Radius of cylinder, \( R \)
- Equal torque \( \tau \) applied to both
- Both initially at rest
Step 2: Moments of inertia
- For solid sphere about its center:
\[
I_{\text{sphere}} = \frac{2}{5} M R^2
\]
- For solid cylinder about its axis:
\[
I_{\text{cyl}} = \frac{1}{2} \times \frac{M}{2} \times R^2 = \frac{M R^2}{4}
\]
Step 3: Angular acceleration
Using \(\tau = I \alpha \Rightarrow \alpha = \frac{\tau}{I}\)
- Sphere:
\[
\alpha_{\text{sphere}} = \frac{\tau}{(2/5) M R^2} = \frac{5 \tau}{2 M R^2}
\]
- Cylinder:
\[
\alpha_{\text{cyl}} = \frac{\tau}{(M R^2 / 4)} = \frac{4 \tau}{M R^2}
\]
Step 4: Ratio of angular speeds after time \( t \)
Since \(\omega = \alpha t\), and \(t\) is same for both,
\[
\frac{\omega_{\text{sphere}}}{\omega_{\text{cyl}}} = \frac{\alpha_{\text{sphere}}}{\alpha_{\text{cyl}}} = \frac{\frac{5 \tau}{2 M R^2}}{\frac{4 \tau}{M R^2}} = \frac{5/2}{4} = \frac{5}{8}
\]
Final Answer:
\[
\boxed{5 : 8}
\]