A circular disc has radius \( R_1 \) and thickness \( T_1 \). Another circular disc made of the same material has radius \( R_2 \) and thickness \( T_2 \). If the moments of inertia of both the discs are same and \[ \frac{R_1}{R_2} = 2, \quad \text{then} \quad \frac{T_1}{T_2} = \frac{1}{\alpha}. \] The value of \( \alpha \) is __________.
A solid cylinder of radius $\dfrac{R}{3}$ and length $\dfrac{L}{2}$ is removed along the central axis. Find ratio of initial moment of inertia and moment of inertia of removed cylinder. 
A, B and C are disc, solid sphere and spherical shell respectively with the same radii and masses. These masses are placed as shown in the figure. 
The moment of inertia of the given system about PQ is $ \frac{x}{15} I $, where $ I $ is the moment of inertia of the disc about its diameter. The value of $ x $ is:
Two point charges 2q and q are placed at vertex A and centre of face CDEF of the cube as shown in figure. The electric flux passing through the cube is : 
An object is projected with kinetic energy K from point A at an angle 60° with the horizontal. The ratio of the difference in kinetic energies at points B and C to that at point A (see figure), in the absence of air friction is : 