Step 1: Check isoelectronic species.
- \(\ce{S^{2-}}\): 18 e\(^{-}\).
- \(\ce{C^{4-}}\): 10 e\(^{-}\).
- \(\ce{Mn^{2+}}\): 25 - 2 = 23 e\(^{-}\).
- \(\ce{Co^{3+}}\): 27 - 3 = 24 e\(^{-}\).
- \(\ce{Fe^{3+}}\): 26 - 3 = 23 e\(^{-}\).
Isoelectronic species: \(\ce{Mn^{2+}}\) and \(\ce{Fe^{3+}}\) (both 23 e\(^{-}\)).
So, \(n = 2\).
Step 2: Complex formula.
\(\ce{CoCl2(en)2NH3}\).
- Coordination number = 6 (2 Cl\(^-\), 2 en, 1 NH\(_3\)).
- Charge balance: en and NH\(_3\) are neutral, Cl\(^-\) are anionic.
\[
\text{Oxidation state of Co} = +3
\]
Step 3: Reaction with AgNO\(_3\).
2 Cl\(^-\) ions are outside coordination sphere → precipitate with AgNO\(_3\).
So, \(n = 2\) moles AgCl formed.
Step 4: Electronic configuration of Co\(^{3+}\).
Co: [Ar] 3d\(^7\)4s\(^2\).
Co\(^{3+}\): [Ar] 3d\(^6\).
In octahedral field with strong ligands (en, NH\(_3\)): low-spin complex.
So, configuration: \(t_{2g}^6 e_g^0\).
Step 5: Number of electrons in \(t_{2g}\).
\[
t_{2g}^6 \quad \Rightarrow \quad 6 \,\text{electrons}
\]
Final Answer:
\[
\text{Electrons in } t_{2g} = 6
\]