Step 1: Rate constant of first reaction at 500 K.
For first-order kinetics:
\[
t_{1/2} = \frac{0.693}{k}
\]
Given \(t_{1/2} = 2 \,\text{h}\):
\[
k_{500}^{(1)} = \frac{0.693}{2} = 0.3465 \,\text{h}^{-1}
\]
Step 2: Rate constant at 300 K for first reaction.
Given: \(k_{500}^{(1)} = 2k_{300}^{(1)}\).
\[
k_{300}^{(1)} = \frac{0.3465}{2} = 0.17325 \,\text{h}^{-1}
\]
Step 3: Relation of activation energies.
Activation energy of second reaction = \(\frac{1}{2}\) of first reaction.
Step 4: Rate constant of second reaction at 500 K.
Given: \(k_{500}^{(2)} = 2k_{500}^{(1)} = 2 \times 0.3465 = 0.693 \,\text{h}^{-1}\).
Step 5: Use Arrhenius relation.
\[
\ln\left(\frac{k_{500}}{k_{300}}\right) = \frac{E_a}{R}\left(\frac{1}{300} - \frac{1}{500}\right)
\]
For first reaction:
\[
\ln\left(\frac{0.3465}{0.17325}\right) = \ln(2) = 0.693
\]
\[
\Rightarrow \frac{E_a^{(1)}}{R}\left(\frac{1}{300} - \frac{1}{500}\right) = 0.693
\]
\[
\frac{E_a^{(1)}}{R} \cdot \frac{200}{150000} = 0.693 \quad \Rightarrow \quad \frac{E_a^{(1)}}{R} = 5197
\]
Step 6: Activation energy of second reaction.
\[
\frac{E_a^{(2)}}{R} = \frac{5197}{2} = 2598.5
\]
Step 7: Calculate \(k_{300}^{(2)\).}
\[
\ln\left(\frac{k_{500}^{(2)}}{k_{300}^{(2)}}\right) = \frac{E_a^{(2)}}{R}\left(\frac{1}{300} - \frac{1}{500}\right)
\]
\[
\ln\left(\frac{0.693}{k_{300}^{(2)}}\right) = 2598.5 \times \frac{200}{150000} = 3.465
\]
\[
\frac{0.693}{k_{300}^{(2)}} = e^{3.465} \approx 32
\]
\[
k_{300}^{(2)} = \frac{0.693}{32} \approx 0.0217 \,\text{h}^{-1}
\]
Final Answer:
\[
k_{300}^{(2)} \approx 22 \times 10^{-3} \,\text{h}^{-1}
\]