




\(N=\frac {mv^2}{r}\)
Therefore, the graph given in option A suits the best for the above relation.
So, the correct option is (A).
In case of vertical circular motion of a particle by a thread of length \( r \), if the tension in the thread is zero at an angle \(30^\circ\) as shown in the figure, the velocity at the bottom point (A) of the vertical circular path is ( \( g \) = gravitational acceleration ). 
Find speed given to particle at lowest point so that tension in string at point A becomes zero. 


The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
It is a vector quantity. A vector quantity is a quantity having both magnitude and direction. Speed is a scalar quantity and it is a quantity having a magnitude only. Motion in a plane is also known as motion in two dimensions.
The equations of motion in a straight line are:
v=u+at
s=ut+½ at2
v2-u2=2as
Where,