Step 1: Condition for zero tension at point A.
At point A, when tension becomes zero, the centripetal force is provided only by the component of weight.
\[
mg\cos 60^\circ = \dfrac{mv^2}{\ell}
\] Step 2: Calculating speed at point A.
\[
\dfrac{mg}{2} = \dfrac{mv^2}{\ell}
\Rightarrow v^2 = \dfrac{g\ell}{2}
\] Step 3: Applying conservation of mechanical energy.
At lowest point, initial speed is $u$. Using M.E.C.:
\[
\dfrac{1}{2}mu^2 = mg\big(\ell + \ell\cos60^\circ\big) + \dfrac{1}{2}mv^2
\] Step 4: Substituting values.
\[
\dfrac{1}{2}u^2 = mg\left(\ell + \dfrac{\ell}{2}\right) + \dfrac{1}{2}\cdot \dfrac{g\ell}{2}
\]
\[
\dfrac{1}{2}u^2 = \dfrac{3g\ell}{2} + \dfrac{g\ell}{4}
= \dfrac{7g\ell}{4}
\] Step 5: Final speed at lowest point.
\[
u^2 = \dfrac{7g\ell}{2}
\Rightarrow u = \sqrt{\dfrac{7g\ell}{2}}
\]