When two identical conducting spheres are in contact, their charges are shared equally. The total charge on both spheres is: \[ Q_{\text{total}} = 4 \times 10^{-6} \, \text{C}. \] Thus, the charge on each sphere after they are in contact will be: \[ Q = \frac{4 \times 10^{-6}}{2} = 2 \times 10^{-6} \, \text{C}. \] Using Coulomb's law for the force of repulsion between the two spheres: \[ F = \frac{1}{4\pi \epsilon_0} \frac{Q^2}{r^2}. \] Substitute the known values for the force and charge and solve for the distance \( r \): \[ 9 \times 10^{-3} = \frac{9 \times 10^9 \times (2 \times 10^{-6})^2}{r^2}. \] Solving for \( r \), we find \( r = 4 \, \text{cm} \).
Final Answer: \( 4 \, \text{cm} \).

Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: