When two identical conducting spheres are in contact, their charges are shared equally. The total charge on both spheres is: \[ Q_{\text{total}} = 4 \times 10^{-6} \, \text{C}. \] Thus, the charge on each sphere after they are in contact will be: \[ Q = \frac{4 \times 10^{-6}}{2} = 2 \times 10^{-6} \, \text{C}. \] Using Coulomb's law for the force of repulsion between the two spheres: \[ F = \frac{1}{4\pi \epsilon_0} \frac{Q^2}{r^2}. \] Substitute the known values for the force and charge and solve for the distance \( r \): \[ 9 \times 10^{-3} = \frac{9 \times 10^9 \times (2 \times 10^{-6})^2}{r^2}. \] Solving for \( r \), we find \( r = 4 \, \text{cm} \).
Final Answer: \( 4 \, \text{cm} \).
Which of the following statements are true?
A. The same Bernoulli's equation is applicable to all the points in the flow field if the flow is irrotational.
B. The value of "Constant in the Bernoulli's equation" is different for different streamlines if the flow is rotational.
C. When a nozzle is fitted at the end of a long pipeline, the discharge increases.
D. The velocity of flow at the nozzle end is more than that in the case of a pipe without a nozzle, the head in both cases being the same.
Choose the most appropriate answer from the options given below:
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .