When two identical conducting spheres are in contact, their charges are shared equally. The total charge on both spheres is: \[ Q_{\text{total}} = 4 \times 10^{-6} \, \text{C}. \] Thus, the charge on each sphere after they are in contact will be: \[ Q = \frac{4 \times 10^{-6}}{2} = 2 \times 10^{-6} \, \text{C}. \] Using Coulomb's law for the force of repulsion between the two spheres: \[ F = \frac{1}{4\pi \epsilon_0} \frac{Q^2}{r^2}. \] Substitute the known values for the force and charge and solve for the distance \( r \): \[ 9 \times 10^{-3} = \frac{9 \times 10^9 \times (2 \times 10^{-6})^2}{r^2}. \] Solving for \( r \), we find \( r = 4 \, \text{cm} \).
Final Answer: \( 4 \, \text{cm} \).
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: