Applying force balance on the ball at constant velocity:
\[ mg - F_B - F_v = ma \]
Since acceleration $a = 0$ for constant velocity:
\[ \Rightarrow mg - F_B = F_v \]
The buoyant force is given by:
\[ F_B = v \rho_0 g \quad \text{where } v \text{ is the volume of the ball.} \]
Force balance equation becomes:
\[ F_v = mg - v \rho_0 g \]
Substituting $v = \frac{m}{\rho}$ (volume in terms of mass and density):
\[ \Rightarrow F_v = mg - \frac{m}{\rho} \rho_0 g \]
\[ F_v = mg \left( 1 - \frac{\rho_0}{\rho} \right) \]
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Which of the following statements are true?
A. The same Bernoulli's equation is applicable to all the points in the flow field if the flow is irrotational.
B. The value of "Constant in the Bernoulli's equation" is different for different streamlines if the flow is rotational.
C. When a nozzle is fitted at the end of a long pipeline, the discharge increases.
D. The velocity of flow at the nozzle end is more than that in the case of a pipe without a nozzle, the head in both cases being the same.
Choose the most appropriate answer from the options given below:
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: